
J .  Fluid Mech. (1994), vol. 275, p p .  351-378 
Copyright 0 1994 Cambridge University Press 

351 

Shear flow over a translationally symmetric 
cylindrical bubble pinned on a slot in a plane wall 
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Steady states of a translationally-symmetric cylindrical bubble protruding from a slot 
in a solid wall into a liquid undergoing a simple shear flow are investigated. 
Deformations of and the flow past the bubble are determined by solving the nonlinear 
free-boundary problem comprised of the two-dimensional Navier-Stokes system by 
the Galerkin/finite element method. Under conditions of creeping flow, the results of 
finite element computations are shown to agree well with asymptotic results. When the 
Reynolds number Re is finite, flow separates from the free surface and a recirculating 
eddy forms behind the bubble. The length of the separated eddy measured in the flow 
direction increases with Re, whereas its width is confined to within the region that lies 
between the supporting solid surface and the separation point at the free surface. By 
tracking solution branches in parameter space with an arc-length continuation method, 
curves of bubble deformation versus Reynolds number are found to exhibit turning 
points when Re reaches a critical value Re,. Therefore, along a family of bubble shapes, 
solutions do not exist when Re > Re,. The locations of turning points and the structure 
of flow fields are found to be governed virtually by a single parameter, We = Ca Re, 
where We and Ca are Weber and capillary numbers. Two markedly different modes of 
bubble deformation are identified at finite Re. One is dominant when Re is small and 
is tantamount to a plain skewing or tilting of the bubble in the downstream direction; 
the other becomes more pronounced when Re is large and corresponds to a pure 
upward stretching of the bubble tip. 

TN 37831-6224, USA 

1. Introduction 
The problem of a drop or a bubble in a simple shear flow is of great technological 

and theoretical interest (e.g. Clift, Grace & Weber 1978). Consequently, it has been the 
subject of many fundamental fluid mechanics studies to date (e.g. Taylor 1934; 
Rumscheidt & Mason 1961 ; Chaffey & Brenner 1967; Cox 1969; Frankel & Acrivos 
1970; Barthes & Acrivos 1973; Choi & Schowalter 1975; Flummerfelt 1980). Review 
articles by Acrivos (1983) and Rallison (1984) summarize both the various theories 
developed to predict the deformation and break-up of drops and bubbles in shear flows 
as well as relevant experimental findings. However, most investigations to date have 
focused on the problem of an isolated drop that is freely suspended in a second fluid 
and theoretical analyses, following the pioneering work of Taylor (1934), have been 
restricted to the creeping flow limit. Little is known about the response of supported 
(sessile or pendant) drops and bubbles in a shear flow ~ a situation that is of interest 
in our research and one that is commonly encountered in many multiphase flow 
processes such as flows on distillation trays and in packed beds among others. 
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FIGURE 1 .  A cylindrical bubble protruding from a slot in a solid wall into a liquid undcrgoing a 
simple shear flow. 

Moreover, the deformation of drops and bubbles in response to a shear flow when 
inertial effects are important has heretofore been an open problem in fluid mechanics. 
Accordingly, the goals of this work are to analyse and develop insights into the 
deformation response of supported bubbles to a shear flow at finite Reynolds numbers. 

The main complexity in studying drops and bubbles in flow fields comes from the 
deformation of the free surface, which gives rise to a free boundary problem. From the 
physical point of view, at the fluid interface pressure due to uniform surface tension ~ 

which likes to maintain the free surface shape of a globular drop or bubble spherical - 
competes with flow induced stresses - which are almost always non-uniform along the 
free surface - to distort and set its shape. Indeed, if the flow is strong enough, the 
distorting stresses can outweigh the pressure due to surface tension and a steady state, 
which requires a balance of forces on the interface, can no longer be achieved. The 
usual consequence of loss of steady state is the disintegration of the free surface: in 
other words, drops or bubbles break into several fragments when they are subjected to 
very strong flow fields (see, e.g. references cited above). Following previous work on 
free drops and bubbles, the major task of the present paper on supported bubbles is 
two-fold: (i) to establish the relationship between the free surface deformation and a 
given flow field and (ii) to determine the critical values of some measure of the strength 
of the flow field beyond which a condition of steady state that demands a balance 
between surface tension and flow induced stresses can no longer be achieved and 
disintegration of the free surface ensues. 

Specifically, we consider a translationally-symmetric cylindrical bubble protruding 
from a slot in a solid wall into a liquid undergoing a simple shear flow, as shown in 
figure 1 .  The axis of the bubble, which lies along the .?-direction, it taken to be 
perpendicular to the direction of liquid flow and the bubble is assumed to be pinned 
to the parallel edges of the slot at the three-phase contact lines (see discussion below). 
Because of the geometrical complexity and nonlinearities inherent in the present free- 
boundary problem, solution by means of analytical methods through expansion in 
terms of conventional functions is both tedious and of limited usefulness. Conse- 
quently, we adopt a numerical approach with finite element basis functions and 
Galerkin’s method of weighted residuals (cf. Strang & Fix 1973). Moreover, the 
Galerkin/finite element method adopted here, in contrast to the boundary integral 
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FIGURE 2. (a) An infinitely long, free cylindrical column of fluid, (b) a cylindrical column of fluid held 
captive between solid faces, and (c )  a supported cylindrical column or a fillet of fluid protruding out 
of a slot. 

method which is a popular technique in drop and bubble problems (cf. Pozrikidis 
1992), allows solution of the nonlinear Navier-Stokes system so that inertial effects 
arising from shear flow at finite Reynolds numbers can be explored. 

When subject to capillary force alone, an infinitely long, free cylindrical column of 
liquid of radius R, as in figure 2(a),  is unstable to axisymmetric shape disturbances that 
are infinitesimal in amplitude, sinuous, and of wavelength h greater than the 
circumference of the cylinder, i.e. h > 27~R (Rayleigh 1879). Hence, only when a 
perfectly cylindrical column of liquid is captive with a length H less than its 
circumference, i.e. H < 2nR, as in figure 2(6), can it be maintained in the real world 
(see, e.g. Mason 1970). An infinitely long, supported cylindrical column or a fillet with 
its contact lines pinned at the edges of a slot, as in figure 1 or 2(c), however, can have 
stable translationally-symmetric equilibrium shapes as long as the interface encloses a 
volume less than that of a half-cylinder (Brown & Scriven 1980). Hence, not only can 
supported cylindrical interfaces be observed in everyday life, but they also provide 
good opportunities for experimental studies owing to the ease with which they can be 
created in the laboratory. 

Aside from translationally-symmetric, supported cylindrical bubbles being phy- 
sically realizable, the present two-dimensional problem is computationally simpler 
than and also should retain certain key features of the problem of fully three- 
dimensional flow past a supported bubble protruding from a circular hole. Indeed, 
with the advantage in computational overhead that the two-dimensional model holds 
over the fully three-dimensional model, the two-dimensional problem of shear flow 
past a supported cylindrical bubble can be a useful prototype of shear flow past a three- 
dimensional supported bubble when the instability in the third dimension is set aside. 

The manner in which a bubble or a drop is attached to the supporting solid surface - 
in other words, whether the three-phase contact line formed at the intersection 
between the bubble or drop, the ambient fluid, and the solid surface is pinned or free 
to move - is an important issue in its own right. In related work on fluid mechanics of 
drops supported on solid surfaces, Durbin (1 988 a, b) determined the wind force that 
is needed to dislodge a two-dimensional drop adhering to a solid surface and King & 
Tuck (1993) analysed the problem of upward flow of air that is required to prevent a 
two-dimensional drop attached to an inclined solid surface from sliding down the plane 
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under the force of gravity. In contrast to the present paper, these authors made certain 
assumptions to simplify the underlying fluid mechanical problem. Durbin ( I  9884 6) 
took the ambient fluid flowing past the drop to be inviscid and the liquid inside the 
drop to be at rest. King & Tuck (1993) took their drop to be a thin liquid layer so that 
the lubrication approximation holds and the flowing stream of air exerts a tangential 
stress that is constant in magnitude over the layer. It is noteworthy that in Durbin’s 
papers, contact angle hysteresis (cf. Dussan & Chow 1983) provides the physical 
mechanism that enables the drop to adhere to the solid surface and makes possible the 
existence of steady states as the wind force increases. However, the situation for a 
meniscus to be pinned at three-phase contact lines is equally common in reality, mostly 
at sharp edges (cf. Oliver, Huh & Mason 1977). Therefore, requiring that the bubble 
be pinned to the sharp edges of the slot in the supporting wall shown in figure 1 is both 
physically natural and reasonable. 

The physical consequence of pinning a contact line is that the meniscus can then 
intersect the solid surface at an arbitrary contact angle without causing the migration 
of the contact line. Of course, this can be true in reality only when the value of the 
contact angle lies in a certain range. At a mathematically sharp edge, this range of 
values that the contact angle can have is determined by the Gibbs inequality (Gibbs 
1906). The Gibbs inequality was derived from a purely geometrical extension of the 
familiar Young-Dupre equation, which is a relationship between the equilibrium 
contact angle and interfacial tensions, but has also been confirmed experimentally by 
Oliver et al. (1977). Hence, pinning a meniscus at an edge or a corner may be achieved 
in practice by choosing solid materials of appropriate wettabilities. Moreover, when 
the contact lines of the bubble are pinned to the edges of the slot, the physical and 
mathematical statements of the problem are complete even in the absence of gravity 
and without a concern for a force balance that would have to hold for the bubble to 
maintain a steady position were its contact lines free to move (cf. Durbin 1988a, 6; 
King & Tuck 1993). 

In what follows, 52 presents the set of nonlinear equations and boundary conditions 
that govern the steady flow of a Newtonian liquid past a deformable translationally 
symmetric cylindrical bubble and also details the Galerkin/finite element methodology 
for discretizing and solving the free boundary problem. Section 3 presents computed 
flow fields and bubble shapes and discusses the evolution of steady shape families of 
fixed bubble volume in parameter space. The correctness of computational results is 
reinforced by asymptotic analysis for the deformation of and the flow past a bubble 
having the volume of a half-cylinder when inertial forces are negligible. By efficiently 
tracking shape families in parameter space by arc-length continuation methods (e.g. 
Keller 1977 ; Abbott 1978), the stability of bubble shapes with respect to translationally 
symmetric disturbances is inferred by connectivity of the shape families (Iooss & 
Joseph 1990; Ungar & Brown 1982). Physical insights into the deformation and 
stability of translationally symmetric, supported bubbles is gained by detailed 
examination of computed pressure distributions on bubble surfaces, and by 
decomposition of highly deformed profiles of bubbles into harmonic functions. Section 
4 concludes the work with a discussion of some possible applications of the reported 
calculations to studies of interfacial rheological phenomena. 
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2. Mathematical formulation and computational analysis 
2.1. Governing equations and boundary conditions 

The system is an incompressible Newtonian liquid of constant viscosity ,LL and density 
p that is flowing past a cylindrical bubble of fixed volume protruding from a slot in a 
solid wall, as shown in figure 1. The bubble is composed of a tenuous gas that exerts 
uniform pressure PIG and negligible viscous drag on the liquid. The interface that 
separates the bubble and the flowing liquid S,  has constant surface tension r. The 
bubble axis lies along the 2-direction and both the bubble shape and the flow field are 
the same in every plane of constant 2. In other words, the problem has translational 
symmetry with respect to the .%direction and the problem domain is the region in the 
(X,jj)-plane for j j  > 0 that lies above the solid wall and exterior to the bubble volume. 
The liquid flow is driven by a Couette device with its relatively moving parallel walls 
far apart. Here the surface with the slot is taken to be the bottom stationary wall of 
the device and the simple shear flow far from the bubble is characterized by a shear rate 
G. Variables and equations that follow are made dimensionless by measuring length in 
units of a characteristic length L that is chosen to be half of the slot width and velocity 
in units of GL. Moreover, in what follows, variables that appear without a tilde are 
dimensionless counterparts of those that appear with a tilde. 

The fluid motion of the liquid phase satisfies the steady, two-dimensional, 
incompressible Navier-Stokes system 

ReueVu = V. 7, 

V . u  = 0. 

Here Re = pGL2/,u is the Reynolds number and the stress tensor of a Newtonian liquid 
7 = -p/+7 = -p/+ [Vu+ ( V U ) ~ ] ,  wherep is the pressure, z is the viscous stress tensor, 
and /is the identity tensor. Both the total stress and the pressure are measured in units 
of pG. The velocity vector u has components (u, V ,  w = 0) in the x-, y - ,  and z-directions, 
respectively. Furthermore, in (1) and throughout the rest of this paper, the relative 
importance of gravitational force is taken to be negligible compared to inertial, viscous, 
and surface forces. 

An equation is next written that ensures that as the bubble deforms, its volume 
above the supporting solid wall is constrained to be a fixed amount V, 

v =  v,. (3) 

At the gas bubble-liquid interface, conservation of momentum is expressed by the 
traction boundary condition 

where Ca = pGL/a is the capillary number, n and t are the local unit normal and 
tangent vectors to the boundary, and s is arc length along the boundary. Here n points 
outward from the boundary, i.e. from the liquid to the gas side, t points in the direction 
of increasing s, and, therefore, dt/ds is the two-dimensional curvature. The unknown 
pressure pG inside the bubble is of course determined by the volume constraint (3). The 
bubble shape is unknown a priori. However, it is a material surface provided there is 
no mass transfer across it. The kinematic condition is then simply 

n . u = O  onS,. ( 5 )  
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FIGURE 3. Problem domain showing the inflow (inlet) boundary S,, outflow (outlet) boundary So, 
bubble surface S,, supporting wall surfaces S,, and S,,, and asymptotic boundary S,. The figure 
also defines coordinate system. 

Along the stationary solid wall of the slot, to the front S,, and the rear S,, of the 
bubble, the liquid must obey conditions of no slip and no penetration, namely 

u = 0 on S,, and SwR. (6) 

Far from the bubble, the liquid velocity asymptotically approaches that appropriate 
for a simple shear flow 

where ex is a unit vector in the x-direction and Y = (x,y,z = 0) is the position vector 
in the (x, y)-plane. 

2.2. Galerkinljinite element analysis 

The Navier-Stokes system (1)-(2) is solved here by the Galerkin/finite element method 
(GFEM) in the mixed interpolation sense (Huyakorn et al. 1978). The solution of the 
free boundary problem that is comprised of equations (1)-(3) and boundary conditions 
(4)-(7) is expedited by adopting techniques developed for solving viscous free surface 
flows by Scriven and coworkers (cf. papers by Kistler & Scriven 1983; Christodoulou 
& Scriven 1989, 1992; and theses by Christodoulou 1990; de Santos 1991). Some 
similar techniques have also been used by Basaran (1992) in his study of nonlinear 
oscillations of viscous drops. 

The problem domain depicted in figure 3 is subdivided into a set of quadrilateral 
elements (see, e.g. Strang & Fix 1973). Each element is mapped onto a unit square in 
the 5-7 domain, 0 d 5 6 1 and 0 d ?1 6 1 (Strang & Fix 1973). On each unit square, the 
unknown values of the velocity and pressure fields are expressed here in an expansion 
of biquadratic and linear discontinuous basis functions, respectively. To facilitate 
simultaneous solution of both the flow field and free surface deformation problems, an 
elliptic mesh generation scheme (Thompson, Warsi & Mastin 1985) developed by 
Christodoulou & Scriven (1992) and modified by de Santos (1991) is employed in this 
paper. The essence of the method is to determine the locations of the nodal or mesh 
points of the finite element grids by solving a pair of elliptic partial differential 
equations (PDEs), 

where the 'diffusion' coefficients D ,  and D,  are adjustable functions of position which 
can be prescribed to meet a particular desire of distribution of nodal or mesh points 
in the problem domain. For example, if D, and D, are set to be constants, a uniform 
mesh is obtained. In order to lessen the computational cost due to solving the mesh 

u+ye,  as I Y I  = ( ~ ' + y ~ ) ~ / ' +  co, (7) 

V. DIV[ = 0, V -  D,Vv  = 0, (8) 
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generation equations (8), the subparametric mapping (instead of the isoparametric 
mapping as commonly used in finite-element computations) for the nodal position 
unknowns, as put forward by Christodoulou & Scriven (1992), is used here. 

Next Galerkin’s method is applied by weighting governing equations (l), (2) and (8) 
with the appropriate finite element basis functions, integrating over the entire physical 
domain, and applying the divergence theorem to simplify the momentum and elliptic 
mesh generation equations. The resulting set of nonlinear algebraic equations are 
further simplified by applying Neumann (natural) and Dirichlet (essential) boundary 
conditions, as outlined in the following paragraphs. 

Because it is impractical to solve a set of nonlinear PDEs on an infinite domain, for 
finite element computations specific inflow, outflow, and asymptotic boundary 
conditions that replace boundary condition (7) must be imposed at a finite distance 
from the bubble. At the inlet boundary S,, a Dirichlet condition 

u = y e z  onS, (9) 
is imposed as the inflow boundary condition to the flow domain a distance xF upstream 
of the bubble axis, i.e. on the plane (-x,,y, 0) where 0 d y 6 y, (see figure 3). At the 
outflow boundary So, the Neumann and Dirichlet conditions 

n - ( n - V u ) = O ,  t . u = O  onS, (10) 
are imposed on the x- and y-components of the velocity, respectively, as the outflow 
boundary conditions to the flow domain at a distance x R  downstream of the bubble 
axis, i.e. on the plane ( xR ,y ,  0) where 0 6 y 6 y,. Prescription of boundary conditions 
on the flow equations (1) and (2) is completed by imposing a Dirichlet condition 

u = y A e ,  onS, (1 1) 
along the asymptotic boundary which is simply the plane (x,y,,O), where -xF 6 
x < X R .  

The GFEM statement of the problem is completed by imposing boundary conditions 
on the mesh generation equations (8). Here along most boundaries equal arc length 
spacing of grid points are used and along the free surface either the 5 = constant or the 
7 = constant mesh lines are forced to be orthogonal to the boundary. The former 
requirement is met by imposing Dirichlet conditions on the relevant mesh generation 
equations and the latter requirement is met by means of Neumann conditions. 

Following the imposition of the boundary conditions, the system of nonlinear 
algebraic equations R({xi } ,  { y i ) ,  {zit}, Cut}, { p t } , p , )  = R ( o )  = 0, where {xi} and { y i }  are 
the nodal position values determined by the elliptic mesh equations (8), {ui) and {vi}  the 
nodal values of x- and y-components of velocity, { p , )  the nodal values of pressure, and 
o is the vector of all nodal unknowns plusp,, is solved by Newton’s method (cf. Ortega 
& Rheinboldt 1970): 

(12) 
In (12), J = aR/ao is the Jacobian matrix of partial derivatives and (k) denotes the kth 
iterate. At each Newton iteration, the resulting linearized system of equations (12) is 
solved by direct factorization or LU-decomposition of the Jacobian matrix with a 
modification of Hood’s frontal solver (Hood 1976; Walters 1980). 

Critical to Newton’s method is the initial estimate of the solution which must be 
accurate enough to fall within the domain of convergence of the method. A convenient 
start-up solution or initial estimate is obtained here by solving the governing equations 
under conditions of Stokes flow, Re = 0, and vanishingly small capillary number, e.g. 
Ca = 0.005, or, equivalently, when surface tension is very large, such that that the two- 

J(k)Ao(k+l) = -R(k)’. 
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FIGURE 4. Typical tessellation of problem domain by the elliptic mesh generation scheme: (a)  a view 
of the entire domain and (b) a close-up view of elliptically generated mesh near a deformed free 
surface. 

dimensional free surface is well approximated by an arc of a circle. Thereafter, steady 
solution families of fixed bubble volume are traced efficiently by first-order 
continuation (Riks 1972; Keller 1977) either in Re, holding Ca fixed, or in Ca, holding 
Re fixed. The Jacobian matrix becomes singular at turning points and also certain 
bifurcation points in parameter space (cf. Iooss & Joseph 1990) and first-order 
continuation cannot lead to a converged solution. To continue along a solution branch 
past a turning point (which is the only kind of singular point encountered in this work), 
an arc-length continuation method (Keller 1977; Abbott 1978) is adopted in this paper. 

2.3. Details of computer implementation 
The algorithm was programmed in FORTRAN and the resulting code was run on an IBM 
RS6000-320H workstation at the Oak Ridge National Laboratory. 

Figure 4 shows a typical mesh obtained with the elliptic mesh generator described 
earlier. In the results to be reported in the next section, the inlet, outlet, and asymptotic 
boundaries were so located by choosing xF = 20, xR = 50, and y A  = 20 that imposition 
of boundary condition (9)-(11) at a finite distance from the bubble virtually had no 
effect on the computed solutions (see below). The domain was divided into 1160 
elements. With the mesh used, the numbers of velocity, pressure and nodal location 
unknowns equalled 9570, 3480 and 2054, respectively. With a total of 15105 
unknowns, each Newton iteration took 345.32 s of central processor time. Typically, 
5 iterations sufficed to bring the L, norm of the error in the solution and residuals 
within lop5. Increasing the size of the computational domain or the number of elements 
deployed in the tessellation changed the location of stability limits or turning points to 
be reported in 5 3  by less than 1 %. 
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3. Results and discussion 
It is instructive to start with the situation in which the bubble volume is maintained 

to be equal to that of a half-cylinder V = K,2, which is the maximum volume a stable 
bubble can have while maintaining translational symmetry under the action of surface 
tension alone (cf. Brown & Scriven 1980). By virtue of the symmetry a half-cylinder 
configuration possesses, this case is also amenable to solution by asymptotic analysis 
in the creeping flow limit. The asymptotic solution reported in 93.1 is indispensable for 
checking the accuracy of computational results to be reported there. The effect of 
inertia on bubbles of volume equal to that of a half-cylinder is taken up in 53.2. 
Because bubbles with volumes less than that of a half-cylinder are expected to be easier 
to obtain in practice, 33.3 presents a series of computations for bubbles of volumes 
smaller than that of a half-cylinder. For the sake of completeness, results for bubbles 
of volumes greater than that of a half-cylinder are also discussed in 53.3. 

3.1. CreepingfIow cases: Re = 0 and V = Y i z  
Creeping flows allow considerable theoretical simplifications because inertia forces are 
negligible. When the amplitude of the deformation of the bubble is small, an analytical 
formula can easily be obtained correct to first order in Ca for the departure of the 
unknown shape from the half-cylinder. Following standard procedures of asymptotic 
analysis, the zeroth-order solution for the streamfunction in polar coordinates (r ,  8) is 
found to be 

y? = - $ ( r 2 -  1)(1 -cos28), (134  
which satisfies the biharmonic equation and all the boundary conditions such as no- 
slip at solid walls, traction and impenetrability conditions at the circular bubble surface 
( r  = l),  and the far-field condition 

Here r = (xz + yz)li2 and 0 is the polar angle measured from the negative x-axis. With 
the known zeroth-order solution for the flow field, it is straightforward to determine 
the stress distribution on the bubble surface, namely pressure 

$ + - y ( 1  -cos28) ( r +  a). (13b) 

and viscous normal stress p = sin28 

r,, = 2  (1 - y?  70 --y? )!! "1 =-2sin28, 

where $" = ay?r/aH, etc. Therefore, to first-order in Ca the bubble shape function is (see 
figure 3 )  

F(8) = 1 - Ca sin 28. 
Remarkably, to first-order in Ca the asymptotic solution for the two-dimensional 

supported bubble predicts the same bubble deformation as that for its three- 
dimensional counterpart (cf. Taylor 1934) with the deformation parameter and the 
orientation angle, respectively, given by 

(14) 

= Ca, a = = 45". D E  Fm a x  - Fm t n 

%ax + Fmin 
Here the orientation angle is defined as a = 71: - Omax with Om,, denoting the polar angle 
at which the interface shape function is a maximum F = F,,,. To first order in Ca, it 
then follows that F,,, = F(i71:) and Fmin = F(t71:) where Fmin is the minimum value 
of F. 

Coincidentally, it can be shown that the zeroth-order solution (13a) also holds for 
a two-dimensional free bubble without the supporting solid wall (cf. Richardson 1968), 
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FIGURE 5. Streamlines of flow past a bubble having the volume of a half-cylinder when Re = 0 for 
various Ca values. For illustrative purposes, the values of $ are chosen to be -0.001, -0.0005, 
-0,0001, 0, 0,001, 0.01, 0.04, 0.1, 0.2, 0.5, and 1. Not all the streamlines corresponding to negative 
values of + are shown in every case because some of these do not have strong enough recirculating 
eddies. 

a result which is a consequence of the symmetry of the circular shape of the bubble with 
respect to the y = 0 plane. If the analysis is extended to the next order following the 
domain perturbation procedure, whereas a solution can be obtained for free bubbles 
in a straightforward way (Zahalak, Rao & Sutera 1987), obtaining a solution for 
supported bubbles is prohibitively difficult. This is because the deformation of a 
supported bubble destroys the natural symmetry that exists in the zeroth-order 
problem. Satisfaction of the condition of zero velocity along the y = 0 plane - 
supporting solid wall - is equivalent to requiring that the flow field and bubble surface 
be symmetric with respect to the y = 0 plane where the deformed surface of the bubble 
possesses discontinuous surface tangents, or forms corners, at B = 0 and B = 7c. The 
existence of these discontinuities render higher-order domain perturbation analyses 
impracticable because in principle an infinite number of terms in the standard 
harmonic expansions must be retained to resolve these corners at the two contact lines. 
Thus, the moderate- to large-amplitude deformations of two-dimensional supported 
bubbles under creeping flow conditions (Re  = 0) is examined in what follows 
by numerically computing a series of solutions in the range of capillary numbers 
0.005 d Ca < 0.5. 

Plots of streamlines for creeping flows past supported bubbles shown in figure 5 
make plain that the flow fields are attached and the streamlines conform to the bubble 
shape until the bubble deformation becomes significant. Here the streamlines, or curves 
of constant values of the stream function y?, were found by solving a set of differential 



Shear f low over a translationally symmetric cylindrical bubble 361 

-0.1 
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 

Capillary number Ca 

FIGURE 6. Variation of bubble deformation parameter D with Ca when Re = 0 for a bubble having 
the volume of a half-cylinder : -, finite-element results and . . ., asymptotic result (1 5a). 

equations dy/v = dx/u along which y? = constant (see $4). When bubble deformation 
is large and the local angle that the free surface makes with the solid wall at the corner 
corresponding to the rear contact line falls below a critical value ( = 78"), the flow 
separates from the free surface and a very weak eddy forms near the rear contact line, 
in accordance with the well-known result due to Moffatt (1964). As bubble deformation 
rises, the bubble shape takes on a virtually elliptical profile with the major axis aligning 
with the direction of principle extension, i.e. with an angle of about 45" with respect 
to the flow direction. Figure 6 shows that the finite-element prediction of the 
deformation parameter defined at (1 5 a) is in very good agreement with its asymptotic 
counterpart when Ca is small. However, it is only for very small Ca that the finite- 
element prediction of the orientation angle agrees with the asymptotic result (1 5b). 
When Ca is not small, the orientation angle a decreases from 45", as shown in figure 
7. This finding accords with results of extensive studies of fully three-dimensional free 
bubbles which have found that a falls as Ca rises (cf. Choi & Schowalter 1975). The 
prediction by Choi & Schowalter is shown in figure 7 by a dotted line for comparison. 
Although both curves in figure 7 indicate the same decreasing trend of CL with Ca, 
quantitative discrepancy that develops when Cn is relatively large is to be expected 
given the significant differences in geometric configurations of the two problems. 

Equation (14) makes plain that in the limit of small capillary numbers, the bubble 
deformation is well described by a single harmonic function, sin 28. As Ca increases, 
not only does the bubble deformation increase but the bubble shape evolves toward 
more complicated configurations that consist of several harmonic components. To 
illustrate this fact, computed bubble shapes are decomposed through the harmonic 
expansion 

m n; 

F(0) = 1 + C a,cosn8+ C b, sinn0. (16) 
n=o n=l 

Figure 8 shows the variation of selected coefficients a, and b, in (16) as a function of 
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FIGURE 7 .  Variation of bubble orientation angle a with Ca when Re = 0 for a bubble having the 
volume of a half-cylinder : -- , finite-element results and ..., asymptotic results of Choi & 
Schowalter (1975). 
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volume of a half-cylinder when Re = 0. 
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FIGURE 9. Streamlines of flow past a bubble having the volume of a half-cylinder when Ca = 0.005 
for various Re values. For illustrative purposes, the values of $ are chosen to be - 0.15, - 0.1, - 0.05, 
-0.02, -0.01, -0.001, O , O . O O l ,  0.01,0.04, 0.1, 0.2, 0.5 and 1. Not all the streamlines corresponding 
to negative values of $ are shown in every case because some of these do not have strong enough 
recirculating eddies. 

Ca. It is noteworthy that all the coefficients in (1 6) are identically zero when Ca = 0 and 
among all the coefficients only b, intersects the ordinate axis, i.e. the vertical line 
Cu = 0, with a non-zero ( = - 1) slope. The latter finding is consistent with the asymptotic 
result (14) because only b, can survive in dF/d(Ca) evaluated at Ca+ 0. Moreover, the 
decomposition (16) has revealed that the computed shapes consist only of harmonics 
of even indices n ;  the coefficients of odd harmonics are virtually zero, i.e. they are on 
the order of truncation error. That the computed shapes consist solely of even 
harmonics is to be expected and can be explained in terms of standard methods for 
constructing domain perturbation expansions. Because all terms in the perturbation 
expansion for the shape function and the stream function at higher orders in Ca, i.e. 
O(Ca2) and higher for F and O(Ca) and higher for $, are constructed by multiplication 
of the leading-order (base) solutions that are represented by two harmonics of indices 
n = 0 and n = 2, as seen from (13a) and (14), the solution to any order of the 
expansions must contain only harmonics of even indices. It is interesting to note that 
all the non-zero coefficients decrease from zero as Ca increases except a, which 
increases from zero with Ca. In order to guarantee that the contact lines remain fixed 
at B = 0 and n: as the bubble deforms, the coefficients of cosines in (16) must sum to 
zero. Consequently, it is prohibited for all the cosine coefficients to have the same sign 
at a given value of Ca, in accord with the results shown in figure 8. 



3 64 J .  Q. Feng and 0. A .  Basaran 

l R e =  1 

100 

115 

125.2 

FIGURE 10. Streamlines of flow past a bubble having the volume of a half-cylinder when Cu = 0.01 
for various Re values. Values of the stream function for which streamlines are shown are the same 
as those of figure 9. 

3.2. Finite-Revnolds-number cases: Re =I= 0 and V = I<,z 
To examine bubble response when Re is finite, solutions were computed for fixed values 
of Ca in the range 0.005 d Ca d 0.05 and for values of Re in the range 0 d Re d Re,. 
Here Re, are the values of the Reynolds numbers at the turning points that signal limits 
of stability (Iooss & Joseph 1990). Figure 9 shows the evolution with Re of streamlines 
of flows past supported bubbles when Ca = 0.005, corresponding to the case of 
relatively large surface tension. When Re = 0 (Stokes flow), the streamlines retain their 
fore-aft symmetry around the bubble which exhibits virtually no deformation from the 
circular profile owing to the effect of large surface tension. At finite Re, however, flow 
separates from the free surface and a recirculating eddy develops behind the bubble. 
Evidently, the length of the separated eddy increases significantly with Re but its width 
remains confined within the level set by the separation point at the free surface. The 
shape of the separated eddies in a simple shear flow past a supported bubble are in 
sharp contrast to those in a uniform flow past a circular cylinder (Fornberg 1980) 
where the width of the eddies also increases with Re. Figure 9 also shows that the 
deformation of the bubble surface becomes more significant as Re increases. The last 
bubble profile and flow field shown in figure 9 corresponds to the neutrally stable 
solution at the turning point where the critical Reynolds number Re, = 243.7. Steady 
solutions along this shape family do not exist for larger values of Re and beyond the 
turning point the solution branch folds back to lower values of Re: these are points 
that are returned to below. Therefore, more than one steady state can exist at a value 
of Re < Re,. Non-uniqueness of solutions for a given set of boundary conditions is not 
unusual for a nonlinear system like the present one where nonlinearities arise from the 
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FIGURE 11. Streamlines of flow past a bubble having the volume of a half-cylinder when Ca = 0.05 
for various Re values. Values of the stream function for which streamlines are shown are the same 
as those of figure 9. 

inertial terms in the Navier-Stokes equations (1) as well as those from the curvature 
term owing to capillarity in the normal stress condition (4) and the coupling of surface 
kinematics to the velocity field at the free surface (5). 

As Cu is increased to 0.01, corresponding to relatively weaker surface tension than 
that of figure 9, noticeable bubble deformation occurs and the separated eddy appears 
at lower Re than when Cu = 0.005, as shown in figure 10. The turning point along 
the solution branch corresponding to Cu = 0.01 is also reached at a much lower 
Re, i.e. Re, = 125.2, than that corresponding to Cu = 0.005. If Cu is further increased to 
0.05, figure 11 shows that the flow structure and bubble deformations become yet more 
sensitive to Re than in both the case of Cu = 0.005 and that of Cu = 0.01. For the case 
of Cu = 0.05, the turning point is reached at Re, = 24.2. 

An important feature of the structure of flow fields shown in figures 9-1 1 is that the 
appearance or onset of flow separation from the free surface and the size of the 
separated eddy are not solely determined by Re, unlike the more common situation of 
viscous boundary-layer separation from a solid boundary. For example, at Re = 100 
the eddy for Cu = 0.01 is much larger than that for Cu = 0.005. Also, when Cu = 0.05 
a sizeable eddy is apparent at Re = 20, whereas when Cu = 0.005 one is barely visible 
at Re = 100. Therefore, the deformation of the free surface is equally if not more 
important in generation of separated eddies, a fact that is consistent with the surface 
vorticity generation mechanism proposed by Ryskin & Leal (1984) and Leal (1989). 

Figure 12 shows the solution branches corresponding to the three bubble families of 
fixed volume having Cu = 0.005,0.01, and 0.05, respectively, in the parameter space of 
F,,, versus Re, where F,,, is the maximum distance from the origin or the centre of 
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FIGURE 12. Steady-state solution branches of families of bubbles of fixed volume equal to that of a 
half-cylinder for Cu = 0.005, 0.01 and 0.05 in the parameter space of e,,, as a function of Re: -, 
stable solutions and . . ., unstable solutions. 

the slot from which the bubble protrudes to the bubble surface. The reason for 
choosing F,,, rather than the deformation parameter (1 5 a )  used for the case of 
elliptical deformations is that bubble shapes at finite Reynolds numbers do not have 
perpendicular 'major' and 'minor' axes. The choice of a simple parameter to 
completely describe the complicated profiles of bubbles at finite Reynolds numbers is 
not unique; the choice of F,,, is only for illustrative purposes. In figure 12, and also in 
figure 13, solutions that lie along the solid arms or portions of the curves correspond 
to steady states that are linearly stable and those that lie along the dashed arms of the 
curves correspond to steady states that are unstable to infinitesimal-amplitude 
disturbances (Iooss & Joseph 1990). The solution corresponding to that at the turning 
or limit point is of course a neutrally stable state. Figure 12 shows that at the stability 
limit (turning point), the critical value of the Reynolds number falls whereas the critical 
value of the bubble deformation (FmaZ) rises as the capillary number increases. Figure 
13 makes plain that as Re increases, the orientation angle a increases at first, reaches 
a maximum value, and then decreases precipitously as the turning point is approached. 
For small Ca, e.g. when Ca = 0.005, the bubble surface is mostly stretched upward as 
Re increases and therefore F,,, so orients that a + 90" when Re % 1. This behaviour 
stands in marked contrast from that in the creeping flow limit where the bubble takes 
on a smooth elliptical profile with an orientation angle a < 45". As Ca increases, the 
bubble surface becomes ' softer' and therefore is deformed more readily. However, 
because steady states can only exist below a critical Reynolds number Re, that falls as 
Ca rises, for larger Ca the deformation component that tends to stretch the bubble 
upward at a = 90" is weakened and the tendency of the bubble to orient toward smaller 
values of a becomes stronger. This is also consistent with the results already uncovered 
under conditions of creeping flow, which show a decrease of a with Ca (cf. figure 7). 

Whereas figures 9-13 reveal that the locations of turning points, i.e. values of Re,, 
and the structure of the flows at a given Re both vary with Ca, a careful inspection of 
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FIGURE 13. Steady-state solution branches of families of bubbles of fixed volume equal to that of a 
half-cylinder for Ca = 0.005, 0.01 and 0.05 in the parameter space of a as a function of Re: -, 
stable solutions and . . ., unstable solutions. 

Ca Re, we, 
0.005 243.712 1.219 
0.01 125.225 1.252 
0.05 24.157 1.208 

TABLE 1. Critical values of Re and We for various Ca values 

Ca Re We X s e p  YX, 
0.005 200 1 0.71682 0.693 19 
0.01 100 1 0.77492 0.661 92 
0.05 20 1 0.97835 0.658 50 
0.005 240 1.2 0.68506 1.010 14 
0.01 120 1.2 0.759 53 0.90927 
0.05 24 1.2 I .  I78 84 0.93480 

TABLE 2. Locations of points ( ~ , , ~ , y ~ ~ ~ )  on the bubble surface from which the flow separates as a 
function of Ca and Re. Also shown are corresponding values of We 

these figures reveals that the location of the turning points and flow structures do not 
vary significantly with the Weber number We = Ca Re = pG2L3/a .  Table 1 shows that 
the critical values of the Weber number at the turning points We,  are virtually identical 
for the three families of bubble shapes each of which is characterized by a different 
value of Ca. Table 2 lists the coordinates of the points on the bubble surfaces (x,,~, y,,,) 
from which the flow separates for various values of Ca and Re, along with the 
corresponding values of We. Clearly, the value of ysep  remains virtually constant as Re 
and Ca vary while keeping their product W e  fixed. However, at a fixed value of We,  
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FIGURE 14. Variation of bubble shape profiles with Re when (a) Ca = 0.005, (b) Cu = 0.01 and 
(c) Cu = 0.05 for a bubble having the volume of a half-cylinder. 
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xsep increases as Ca increases, a result that accords with earlier observations that tilting 
of bubbles become more pronounced as capillary number Ca increases. That the Weber 
number plays a central role or, equivalently, that inertial effects play a more important 
role than viscous ones, is to be expected because in the present study pronounced 
variations in the flow structure and the appearance of turning points occur when 
R e 9  1. 

Figure 14 shows the evolution of bubble profiles with Re along steady solution 
branches of fixed Ca: up to the turning point along the stable arm of the solution 
branch the bubble deforms more significantly as Re increases and past the turning 
point it deforms further as Re decreases. Plainly, at least two different deformation 
components exist at finite Re: one is dominant at low Re and is tantamount to a 
stretching of the bubble along the direction of principal extension (skewing mode) ; the 
other is dominant at large Re and corresponds to an upward stretching of the bubble 
tip to where the free stream velocity is higher (erecting mode). When Ca is small 
significant bubble deformation does not occur until Re becomes quite large. Therefore, 
in this situation the erecting mode is quite noticeable, as shown in figure 14(a). As Ca 
increases more pronounced bubble deformations arise at smaller Re, such as in figures 
14(b) and 14(c), making the skewing mode increasingly more noticeable. Even at a 
given value of Re, the degree of skewing or erecting of the free surface varies with 
distance measured from the supporting solid wall (y-coordinate). In the region close to 
the solid wall the free surface shows more skewing, whereas near the tip, which is far 
from the solid wall and subject to larger velocities in the simple shear field than the rest 
of the bubble surface, the free surface exhibits mostly upward stretching. Hence the 
general feature of shape profiles for Re 9 1 is a skewing toward the downstream 
direction with the bubble surface possessing a concave front surface and a highly 
curved tip that erects upward in the y-direction. Figure 14 shows that the rear surface 
of the bubble is always smoothly curved because below the point on the bubble surface 
where the flow separates from it the pressure due to surface tension dominates the flow 
induced stress arising from the rather weak nearby flow in the recirculating eddy. When 
Re approaches Re,, however, the bubble shape becomes more skewed, a trend that 
has already been indicated in figure 13 where it is shown shows that a decreases as 
Re + Re,. 

To gain further insight into the effect of finite inertia on the evolution of the various 
deformation modes with Re, it is instructive to decompose computed bubble shapes as 
in (16). Figure 15 shows the variation of selected coefficients a, and b, in (16) as a 
function of Re when Ca = 0.01. Away from the turning point, as Re increases the 
general trend of bubble deformation is a relatively slow evolution of the ‘skewing 
mode’ represented by the negative b, and a relatively fast increase of the ‘erecting 
mode’ represented by both the negative and decreasing a2 as well as the positive and 
increasing a4. As the turning point is approached, the rate of change of the absolute 
value of the negative b, increases, whereas those of the negative a, and the positive a4 
decrease. The variations of the harmonic coefficients depicted in figure 15 as Re 3 Re, 
are thus consistent with the rapid drop of a with Re shown in figure 13 and the change 
in the bubble profiles shown in figure 14. 

The significant differences in bubble profiles at large and small Re suggest a marked 
difference in the distributions of normal stress - the sum of pressure and viscous 
normal stress - on the bubble surfaces. In creeping flows, the form of the pressure 
distribution is the same as that of viscous normal stress along the bubble surface, as 
shown by (13 c) and (1 3 d).  When Re 9 1, pressure rather than viscous normal stress 
is expected to be the dominant factor that causes a bubble to deform. Indeed, our 
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FIGURE 15. Decomposition of the shape of a bubble into harmonic functions as given by (16). 
Variation with Re of the first few Fourier-sine and -cosine coefficients u, and 6 ,  in (16) for a bubble 
having the volume of a half-cylinder when Cu = 0.01. 

computational results for the case Cu = 0.01 shows that the ratio of the peak value of 
pressure to that of viscous normal stress is about 0.5, 5 ,  20 and 30 for Re = 0, 10, 50 
and 100, respectively. Therefore, it is instructive to examine the distribution of pressure 
on the surfaces of deformed bubbles. Figure 16 shows the evolution of the distribution 
of pressure on the surface of a bubble with Re at Ca = 0.01. For plotting purposes, it 
is convenient to scale the values of pressure for Re > 1 by the Reynolds number Re, 
which is equivalent to measuring pressure in units of pG2Lz instead of pG as in the 
original non-dimensionalization process. As expected, when Re ,< 1 the pressure 
profile has two distinct peaks, one positive and the other negative, in accord with the 
creeping flow solution (13c). When Re + 1, the positive peak diminishes and the 
surface pressure distribution develops a large negative peak near the tip ( f l  - 90') 
where the flow velocity is greatest. Plainly, this negative pressure peak is responsible for 
stretching the bubble tip upward. Because of the asymmetric distribution of surface 
pressure between the front and rear, i.e. pressure in the front is generally higher than 
that in the Tea-, the bubble is also caused to skew or tilt in the downstream direction. 

At the turning points, the flow induced stresses at the bubble tips become so large 
that surface tension eventually cannot balance them on as highly curved tips as the 
bubbles can develop were Re to increase further. Thus, families of fixed bubble volume 
turn toward lower Reynolds numbers and the bubbles become unstable. Although the 
transient evolution of the insiability is not modelled in this paper, the computed results 
at the turning points suggest that the breakup process would start from the highly 
curved tip where the strong negative pressure peak there would tend to tear the bubble 
surface. 

By virtue of the two-dimensionality of the present problem, the flow on the bubble 
surface is merely a combination of pure extension and pure contraction without surface 
shear, a unique feature that can render it useful for interfacial rheological 
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FIGURE 16. Distribution of pressure on the surface of a bubble having the volume of 
a half-cylinder when Ca = 0.01 for various Re values. 
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FIGURE 17. Distribution of velocity on the surface of a bubble having the volume of 
a half-cylinder when Ca = 0.01 for various Re values. 

measurements. With this application in mind, figure 17 shows the evolution of the 
tangential velocity distribution on the bubble surface with Re when Ca = 0.01. In 
accord with intuition, the surface velocity typically rises with 0 on the front of the 
bubble, reaches its peak value near the tip, and then falls with 8 on the rear of the 
bubble. The surface flow undergoes pure extension on the front of the bubble and 
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FIGURE 18. Distribution of velocity on the surface of a bubble having the volume of 
a half-cylinder when (a) We = 0.5 and (b)  We = 1 for various Ca values. 

mostly contraction on its rear. When Re is sufficiently large, the separated eddy drives 
a weak back flow on the bubble surface thus there is some extensional component near 
the rear contact line. Figure 17 shows that at  a fixed value of Ca, both the maximum 
surface velocity and the surface velocity gradient increase with Re. Figure 18 shows that 
the surface velocity increases with We = Ca Re, but its distribution is quite similar at 
the same value of We. However, at a given We both the maximum surface velocity and 
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FIGURF 19. Streamlines of flow past a bubble having the volume of f of a half-cylinder when 
Co = 0.01 for various Hc values Values of the stream function for which streamlines are shown 
are the same a s  those of figure 9 

surface velocity gradient increase with Re. Hence, in studying interfacial rheological 
phenomena with the present set-up, increasing W e  and Re would be effective ways to 
increase the rate of surface strain. However, it should be kept in mind that both W e  
and Re are confined below their values at the turning points. 

3.3. Bubbles with volumes smaller and greater than that of a half-cylinder: V + K I z  
Bubbles of volumes less than that of a half-cylinder are expected to be much easier 

to maintain in practice because of the stabilizing influence of surface tension. 
Therefore, figure 19 shows the evolution with Re of streamlines of flows past 
a supported bubble having a volume of three-quarters that of a half-cylinder, i.e. 
V = gYiz, when Ca = 0.01. Plainly, the flow structure and bubble deformation modes 
follow qualitatively the same trends as those shown earlier in the case of a half-cylinder. 
Figure 19 shows that when V = gK,2, separated eddies of size comparable to those for 
the case of a half-cylinder and the turning point occur at higher Re than when I/ = Kl2,  
namely Re, = 216.7 when V = :K,, and Ca = 0.01. Although Re (and also We) can be 
increased to higher values in this case than when V = KiZ before the turning point is 
reached, the maximum surface velocity (not shown) that can be attained, however, is 
no more than that of the half-cylinder case. Evidently, this is due to the smaller local 
liquid velocity that the relatively lower tip of the bubble is exposed to in a simple shear 
flow. 

When the capillary number is held fixed at Ca = 0.01 but the bubble volume is 
increased to five-quarters of a half-cylinder, i.e. V =  $Ki2 ,  the flow structure and 
bubble deformation modes obtained are qualitatively the same as those when V = K l z  
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FIGURE 20, Variation of the critical Reynolds number Re, with normalized bubble volume when 
Ca = 0.01. The bubble volume is normalized by that of a half-cylinder. 

and V = $K/*, except the turning point occurs at a lower Reynolds number Re, = 81.9; 
because of this generic nature of the results, streamlines and bubble shapes for the 
situation when V = $K,, are not shown. The variation of the critical value of the 
Reynolds number for instability is shown in figure 20 as a function of the bubble 
volume normalized by that of a half-cylinder, i.e. V/  <,z. Figure 20 demonstrates that 
as bubble volume decreases, the critical Reynolds number for instability increases. The 
reasons that the rate of change of Re, with V/  y,2 increases as V/  <,% decreases are 
twofold. First, when V/P',,, decreases, the surface area decreases and the bubble 
surface is made 'stiffer'. Secondly, when V/V,,, decreases, the bubble surface on the 
whole experiences lower ambient flow velocities and surface tension is able to keep the 
bubble stable until higher shear rates, or Reynolds numbers, are reached. 

4. Concluding remarks 
According to the foregoing results, a supported translationally symmetric cylindrical 

bubble of fixed volume protruding from a slot into a liquid undergoing a simple shear 
flow will remain stable with respect to translationally symmetric disturbances until the 
Reynolds number Re reaches a critical value Re,. Evidently, such supported bubbles 
would become unstable when Re > Re, by rupturing of the interface at the bubble tip 
where the curvature (radius of curvature) is highest (smallest), although they may 
succumb sooner to fully three-dimensional disturbances. The breakup of supported 
bubbles cannot be answered by the steady-state analyses reported in this paper. 
However, the Galerkin finite element method employed here can be readily extended 
(see, e.g. Basaran 1992) to analyse the transient evolution of the instability and breakup 
of supported bubbles. 

Based on computational results reported in this paper, the computed solutions are 
generic because the qualitative features of both the bubble deformation and the 
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structure of the flow fields vary insignificantly with changes in bubble volume. 
Intuitively, however, bubbles of volumes smaller than that of a half-cylinder are 
expected to be easier to maintain as translationally symmetric shapes because surface 
tension tends to suppress disturbances in the third dimension (2-direction) when 
V <  K i z .  For bubbles of volume larger than that of a half-cylinder, surface tension 
alone can cause a bifurcation from a family of translationally symmetric shapes to one 
of fully three-dimensional wavy profiles (cf. Brown & Scriven 1980). Whether the flow 
field can stabilize disturbances in the third dimension cannot of course be answered by 
the present two-dimensional analysis. Analyses of the problem of bubble stability with 
respect to general three-dimensional disturbances and the transient process of bubble 
breakup are issues worthy of attention in their own right and are left open as goals of 
future research. 

The elliptic mesh generation scheme employed in this paper allows tracking of 
families of bubble shapes of fixed volume to large deformations even when inertial 
effects are substantial. The results depicted in figures 5 ,  9-1 1, and 19 show that it offers 
other benefits as well. When the Navier-Stokes system is solved in the so-called 
primitive variable formulation for the components of the velocity at the nodes of the 
finite element tessellation, nodal values of the stream function are typically obtained by 
solving a Poisson equation Vz$ = -a, where w = (av/ax) - (G?u/ay) is the z-component 
of the vorticity (see, e.g. Lee, Gresho & Sani 1979). The stream function that is so 
obtained is of course smoothed, in contrast to the stream function that is calculated by 
the method described in 93 of this paper. By automatically updating the mesh from one 
parameter step to the next so that the angles formed at  the intersections of the sides of 
the elements are always maintained near 90" (cf. Strang & Fix 1973), the elliptic mesh 
generator allows the computation of high quality streamlines without the use of any 
smoothing. 

When the bubble shapes are indeed translationally symmetric and the flow field is 
two-dimensional, the results of this paper show that a steady flow state always exists 
at an arbitrary value of Re so long as Ca Re = We < 1.2. Because steady states for 
large Re can only be obtained for relatively small values of Ca, or relatively strong 
values of surface tension force, one would not expect to find drastically new behaviour 
of bubble response and deformation at higher values of Re than those reported in this 
paper. However, the computational cost of solving for the flow past and the shape of 
a bubble increases as Re increases because the size of the computational domain and 
the number of elements use to subdivide it have to rise to maintain computational 
accuracy. Such high Re calculations are not pursued in this paper. Nevertheless, the 
flow structure may continue to change with increasing Re. The evolution of the flow 
structure and the unusual shapes of the recirculating eddies uncovered in this paper as 
Re becomes very large deserve further detailed study. However, this aspect of the flow 
problem can be investigated more efficiently and conclusively by considering a fixed 
boundary problem without having to solve for the unknown shape of the free surface 
(e.g. Dandy & Leal 1986) and is a goal of future research. 

The choice of dimensionless groups used in this paper in presenting the results is by 
no means unique. The choice of Re and Ca as the pair of dimensionless groups used 
is natural for two reasons. First, following previous works on viscous free surface 
flows, it is customary to set Re = 0 and vary Ca to explore the effect of 'surface 
tension' on bubble deformation in creeping flows. Secondly, it is also customary to fix 
Ca and vary Re to explore the effect of 'inertia' on bubble deformation and 
flow separation, among other things. In a real experiment, the capillary number 
Ca = ,u(GL)/a can be held fixed and the Reynold number Re = p(GL) L / p  can be 
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varied by fixing fluid properties ,u and p and the product G L  but changing the half- 
width of the slot L. The results can be presented in an alternative and equally useful 
manner in terms of the pair of dimensionless groups Re and the property number 
9 = Re/Cu = pLrr/,uu2. In an experiment, fixing 9 and varying Re corresponds to a 
study in which the motion past a bubble is observed at various shear rates. Yet another 
future goal of this research is to carry out a systematic set of experiments in which the 
flow past a supported bubble is examined from both these points of view. 

The proposed experiments on supported bubbles in a shear flow can also furnish 
insights into the phenomenon of migration of the contact line(s) from the sharp edges 
of the slot when the Gibbs inequality is violated (Oliver et al. 1977; see also $1). The 
finite element methodology outlined and employed in this paper can be extended to 
account explicitly for the Gibbs inequality, as in the experimental and theoretical study 
of the ‘teapot’ effect (Reiner 1956) by Kistler & Scriven (1994). 

Although experiments with supported bubbles have direct relevance to diverse 
situations of immense practical importance in chemical engineering, certain features of 
the present flow ought to make it extremely useful to fundamental studies on isolating 
and identifying surface rheological phenomena. The present problem configuration is 
made particularly attractive because the flow past the cylindrical interface is not only 
two-dimensional but the surface rate of strain fields on the bubble surface are no more 
than a combination of pure extensions and pure contractions, i.e. a pure dilatational 
component. By contrast, with the traditional method involving a shear flow past a 
three-dimensional free drop or bubble for the measurement of interfacial viscosities, 
the surface strain field always contains a mixture of shear and dilatation (Wei, Schmidt 
& Slattery 1974; Philips et al. 1980). Moreover, the steady nature of the present flow 
problem should also render ease to methods for accurate measurement of various 
dynamic interfacial properties. 
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